Cis- and Trans-Influences in Platinum(II) Iodide Complexes

D. R. ARMSTRONG, R. FORTUNE and P. G. PERKINS Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, U.K. and R. J. DICKINSON and R. V. PARISH Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester M60 1QD, U.K. Received June 17, 1975

Cis- and trans-influences in a number of squareplanar platinum(II) complexes have been studied by a CNDO-MO method. The series considered were $Pt(L)I_3^-$, trans- $Pt(L)_2I_2$ and cis- $Pt(L)_2I_2$, where ligand L was varied to include PH_3 , C_2H_4 , CO, H_2S , NH₃, H_2O , H^- , SiH_3^- , CN^- , CH_3^- , Γ , $C\Gamma$, OH^- , and NO_2^- . Comparison of the results between these series shows that the cis-influence is similar in magnitude to the trans-influence, although the two ligand sequences are not parallel. The variation in the iodine orbital populations within the cis-ligand series is in reasonable agreement with ¹²⁹I Mössbauer data.

Introduction

Although the trans-effect series has been established for some time, it is only in recent years that the directive nature of the electronic forces involved has been extensively studied.^{1,2} Sophisticated experimental and theoretical techniques have evaluated the relative importance of the trans-influence and correlated most of the experimental data pertaining to the trans-orientative forces operating in square-planar platinum(II) complexes.³⁻⁶ However, current understanding of the corresponding cis-influence remains somewhat limited. This latter electronic manifestation is thought to be relatively small and has been reported to depend on the ligands in the same or in the opposite sense to the trans-influence.³ Previous theoretical analysis suggests that the two influences should show similar dependence on the ligands,⁵ while recent Mössbauer spectroscopic data⁷ propose the opposite trend.

The aim of the present work, therefore, is to provide a more accurate description of the *cis*-influence, to compare it with that of the analogous *trans*-influence, and to examine the compound effect of both influences in complexes of the type *cis*-Pt(L)₂X₂. For this purpose we have implemented the molecular orbital formalism,⁸ utilising a modified CNDO computational framework,^{9,10} to study a variety of mono- and di-substituted derivatives of PtI_4^{2-} . The input parameters for all the atoms except iodine have been successfully used in previous calculations.⁶ The iodine one-centre twoelectron repulsion integrals were equated to 12.5 eV,¹¹ while the diagonal elements of the core Hamiltonian matrix were obtained from the corresponding valence orbital ionisation potentials. The bond lengths were extracted from references 5, 12, and 13.

Since the *trans*- and *cis*-influences of a ligand are defined in terms of their ability to weaken bonds, a quantitative measure of bond strength is desirable. It has been shown that the character of a bond is best described by a bond index defined¹⁴ in terms of density matrix elements, P, as

$$\mathbf{B}_{\mathbf{A}\mathbf{B}} = \sum_{\boldsymbol{\lambda} \in \mathbf{A}} \sum_{\sigma \in \mathbf{B}} \mathbf{P}_{\boldsymbol{\lambda}\sigma}^{2}$$

where λ and σ are atomic orbitals on atoms A and B, respectively. Bond indices evaluated in this manner are compatible with chemical reasoning, *e.g.*, in ethylene the carbon-carbon bond index is 2.0, indicating the presence of a double bond.¹⁵ In the present work, it is convenient to examine individual contributions to the bond index in order to determine the rôle of each atomic orbital in the bonding scheme. It is, therefore, useful to define a partial bond index in which the summation extends over only one orbital:

$$B_{\lambda B}' = \sum_{\sigma \in B} P_{\lambda \sigma}^2$$

In this way, the contribution of the orbital to the total interatomic bonding may be reliably assessed. It is possible to obtain a large amount of information on bonding and electronic distributions employing only atomic orbital populations and the two bond indices defined above. A large number of platinum complexes of the types $Pt(L)I_3$, *cis*- and *trans*- $Pt(L)_2I_2$ have been analysed in this manner. These complexes were selected in view of the current interest in, and availability of, platinum–iodide complexes.⁷ The ligand L was systematically varied to include PH_3 , C_2H_4 , CO, H_2S , NH_3 , H_2O , H^- , SiH_3^- , CN^- , CH_3^- , I^- , CI^- , OH^- , and

D. R. Armstrong, R. Fortune, P. G. Perkins, R. J. Dickinson and R. V. Parish

 $C_2H_4 > CO > CN > PR_3 > SR_2 > H^- > CH_3^- >$ $NO_2^- > I^- > CI^- > NH_3 > OH^- > H_2O$. The calculated trans-influence series, based on trans-bond weakening in Pt(L)I₃⁻, are

$$PH_3 > C_2H_4 > CO > H_2S > NH_3 > H_2O$$

and
$$H^- > SiH_3^- > CN^- > CH_3^- > I^- > CI^- > OH^-$$
$$> NO_2^-$$

The discrepancies between the two series are greater when L is a π -bonding ligand, e.g., CN⁻, NO₂⁻. This suggests that the controlling factor in ligand substitution reactions of the type

$$Pt(L)I_3 + X^- \rightarrow trans-Pt(L)(X)I_2 + I^-$$

is stabilisation of the five-coordinate transition state rather than bond-weakening in the reactant. This is in agreement with calculations on the reaction coordinate of ligand substitutions in platinum-chlorine complexes containing π -bonding ligands.⁶ For σ -bonding ligands, a much improved correlation between trans-influence and trans-effect is evident. This indicates that bondweakening in the reactant plays a decisive rôle in determining the substitution patterns.

It has been suggested that both the trans-effect and the trans-influence operate via platinum p_{σ} orbitals.¹⁶ However, the present data, our previous calculations for chloro-platinum complexes, and the more approximate calculations of earlier workers,⁵ show that the contributions to the Pt-I_T(Cl_T) bond of platinum 6s and $6p_x$ orbitals are almost independent of L, and the variation in bond order is caused principally by the changing participation of the 5d $x^{2}-y^{2}$ orbital.

The Cis-influence

The cis-influence may be studied both in $Pt(L)I_3^-$ (Table I) and in *trans*- $Pt(L)_2I_2$ (Table II). On the basis of total $Pt-I_C$ bond indices, the cis-influence series found are:

$$Pt(L)I_{3}$$
; $PH_{3} > H_{2}S > C_{2}H_{4} > NH_{3} > H_{2}O$

> CO

 $CO > H_2O$

and

$$SiH_3^->CH_3^->OH^->I^->CN^->H^->$$

 $C\Gamma>NO_2^-$
trans -Pt(L)₂I₂: PH₃>H₂S>C₂H₄>NH₃>

and

$$SiH_3^- > CH_3^- > I^- > H^- > OH^- > CI^- > OH^- > NO_2^-$$

Although there are minor variations, these series are substantially the same. As might be expected, the bond index varies more widely in the second series than the first, reflecting the combined effect of two ligands. In both cases the contribution of all the platinum orbitals varies but that of the 6s orbital plays the dominant rôle. It is of interest to record that the contribution of

Figure 1. Geometries of Pt(L)I₃⁻, cis-Pt(L)₂L₂ and trans- $Pt(L)_2I_2$.

 NO_2^{-} . The series *trans*-Pt(L)₂I₂ displays primarily the cis-influence of L on the Pt-I bonds, whereas in the series $Pt(L)I_3^-$ both *cis*- and *trans*-influences may be examined in the same molecule. In the series cis- $Pt(L)_2I_2$, both influences operate and their combined effect may be determined. The coordinate systems are defined in Figure 1, and the results of the calculations are presented in Tables I-III.

Results and Discussion

The Trans-influence

In the complexes $Pt(L)I_3^-$ the $Pt-I_T$ bond is, of course, affected both by the trans-influence of L and by the cis-influence of the other two iodide ligands. It seems reasonable, however, to assume that the variations in the cis-influence of I_C will be small relative to the change in trans-influence induced by varying L, and the $Pt-I_T$ bond index is taken as a measure of the trans-influence of L.

When comparing the bond indices, it is essential that the overall charge on the complex remain unaltered, since this modifies the electronic distributions. For this reason the complexes containing the neutral and uni-negatively charged ligands have been considered separately.

It should be noted that the trans-influence series is not required to be the same as the trans-effect series, since trans-bond weakening may not control the ability of a ligand to labilise the position trans to itself. A comparison of the two series therefore proves interesting. The experimentally observed trans-effect series is²

Cis- and Trans-Influence in Pt(II) Complexes

TABLE I. Electronic Distributions in Pt(L)I₃⁻ Complexes.

	Atom Charges			Orbital	Orbital Populations I _T				Bond Indices		
L	Pt	IT	Ic	5	p _x	p _y	<i>p</i> ₂	d	Pt–I _T	Pt-I _c	I _r –I _c
PH ₁	+0.015	-0.355	-0.365	1.685	1.614	1.942	1.918	0.196	0.818	0.701	0.369
C ₂ H ₄	+0.087	-0.357	-0.451	1.683	1.608	1.939	1.919	0.207	0.856	0.742	0.392
co	+0.078	-0.336	-0.398	1.683	1.558	1.943	1.924	0.209	0.882	0.784	0.382
H ₂ S	+0.027	-0.320	-0.391	1.690	1.594	1.935	1.915	0.205	0.876	0.739	0.389
NH ₄	+0.005	-0.335	-0.455	1.686	1.570	1.942	1.927	0.209	0.918	0.755	0.384
H ₁ O	+0.013	-0.304	-0.448	1.689	1.525	1.944	1.931	0.215	0.956	0.767	0.391
н-	-0.068	-0.592	-0.545	1.713	1.821	1.939	1.918	0.201	0.572	0.701	0.366
SiH ₁ -	-0.106	-0.512	-0.448	1.711	1.746	1.944	1.917	0.194	0.608	0.633	0.354
CN ⁻	-0.011	-0.539	-0.526	1.705	1.764	1.941	1.922	0.208	0.658	0.701	0.361
CH ₁ -	-0.011	-0.526	-0.549	1.712	1.733	1.945	1.929	0.209	0.696	0.673	0.358
F	-0.041	-0.489	-0.489	1.727	1.697	1.944	1.941	0.180	0.699	0.699	0.324
Cr	+0.049	-0.499	-0.515	1.709	1.702	1.946	1.929	0.212	0.734	0.703	0.361
OH-	+0.063	-0.516	-0.553	1.713	1.718	1.944	1.929	0.213	0.737	0.686	0.355
NO ₂ -	+0.065	-0.473	-0.513	1.698	1.690	1.943	1.927	0.214	0.782	0.727	0.364
	• • •										
	Contrib	utions to P	t-I _T Bonds								
L	Contrib Pt(s)-I	outions to P r P	$t_{T} = I_T Bonds$ $t(p_x) = I_T$	$Pt(d_{x^2-y^2})$)–I _T I ₁	r(s)-Pt	I _T (į	₽ _x)–Pt	I _T (p _y)–P	t I	r(pz)-Pt
L PH3	Contrib Pt(s)-I ₇ 0.212	n P	$t(p_x)-I_T$ 160	$\frac{Pt(d_{x^2-y^2})}{0.299}$)–I _T I ₁	r(s)–Pt .296	I _T ()	₽ _x)–Pt 84	$\frac{I_{T}(p_{y})-P_{f}}{0.051}$	t I-	r(pz)-Pt
L PH₃ C₂H₄	Contrib Pt(s)-In 0.212 0.236	r P 0. 0.	$t = I_T Bonds$ $t(p_x) = I_T$ 160 168	Pt($d_{x^2-y^2}$ 0.299 0.305)—I _T I _T 0 0	r(s)–Pt .296 .318	I _T () 0.3 0.3	₽ _x)–Pt 84 96	I _т (<i>p</i> _y)–Р 0.051 0.057	t I- 0 0	r(pz)-Pt
L PH ₃ C ₂ H ₄ CO	Contrib Pt(s)–I ₁ 0.212 0.236 0.218	r P 0. 0. 0. 0.	$t_{T} = I_T Bonds$ $t(p_x) = I_T$ 160 168 169	Pt($d_{x^2-y^2}$ 0.299 0.305 0.313	$)-I_{T}$ I_{T} 0. 0 0. 0.	r(s)–Pt 296 318 315	I _T (r 0.3 0.3 0.4	P _x)–Pt 84 96 01	I _т (<i>p</i> _y)–Рт 0.051 0.057 0.063	t I- 0 0 0 0	r(p _z)–Pt
L PH₃ C₂H₄ CO H₂S	Contrib Pt(s)-I ₁ 0.212 0.236 0.218 0.211	r P 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t_{T} = I_T Bonds$ $t(p_x) = I_T$ 160 168 169 156	Pt(d x ² -y ² 0.299 0.305 0.313 0.356	$)-I_{T}$ I_{T} 0. 0. 0. 0. 0. 0. 0.	r(s)-Pt 296 318 315 302	I _T (r 0.3 0.3 0.4 0.4	P _x)–Pt 84 96 01 34	I _τ (<i>p</i> _y)–Pt 0.051 0.057 0.063 0.051	t I- 0 0 0 0 0 0	r(p _z)–Pt 0.063 0.063 0.077 0.062
L PH₃ C₂H₄ CO H₂S NH₃	Contrib Pt(s)–I 0.212 0.236 0.218 0.211 0.219	P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t-I_T$ Bonds $t(p_x)-I_T$ 160 168 169 156 161	Pt(d x ² -y ² 0.299 0.305 0.313 0.356 0.370)-I _T I ₇ 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319	I _T (r 0.3 0.3 0.4 0.4 0.4 0.4	2 _x)–Pt 84 96 01 34 53	$I_{T}(p_{y})-P_{1}$ 0.051 0.057 0.063 0.051 0.054		r(p _z)–Pt .063 .063 .077 .062 .065
L PH₃ C₂H₄ CO H₂S NH₃ H₂O	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t-I_T$ Bonds $t(p_x)-I_T$ 160 168 169 156 161 156	Pt(d x ² -y ² 0.299 0.305 0.313 0.356 0.370 0.413	$)-I_{T}$ I_{T} 0. 0 0. 0 0. 0 0 0. 0 0. 0	r(s)-Pt 296 318 315 302 319 318	I _T (x 0.3 0.3 0.4 0.4 0.4 0.4 0.4	2x)-Pt 84 96 01 34 53 98	$I_{T}(p_{y})-P_{1}$ 0.051 0.057 0.063 0.051 0.054 0.052		r(p _z)–Pt .063 .063 .077 .062 .065 .061
L PH₃ C₂H₄ CO H₂S NH₃ H₂O H⁻	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t_{T} = I_T Bonds$ $t(p_x) = I_T$ 160 168 169 156 161 156 149	Pt(d x ² -y ² 0.299 0.305 0.313 0.356 0.370 0.413 0.132)-I _T I ₁ 0. 0 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292	I _T (x 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4	P _x)-Pt 84 96 01 34 53 98 73	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043		r(p _z)-Pt
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SiH ₃ ⁻	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t_{T} = I_T Bonds$ $t(p_x) = I_T$ 160 168 169 156 161 156 149 145	$Pt(d_{x^{2}-y^{2}})$ 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163	$)-I_{T}$ I_{7} 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292 233	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.2	<i>p</i> *)–Pt 84 96 01 34 53 98 73 46	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.052		r(p _z)-Pt .063 .063 .077 .062 .065 .061 .060 .061
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SiH ₃ - CN ⁻	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170 0.173	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t_{r} = I_{T}$ Bonds $t(p_{x}) = I_{T}$ 160 168 169 156 161 156 149 145 151	Pt(d x ² -y ² 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163 0.172	$)-I_{T}$ I_{7} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292 233 279	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2	p _x)-Pt 84 96 01 34 53 98 73 46 31	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.054		r(p _z)-Pt .063 .063 .063 .065 .061 .066 .061 .066
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SiH ₃ - CN ⁻ CH ₃ -	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170 0.173 0.189	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t_{r} = I_{T}$ Bonds $t_{r} = I_{T}$ 160 168 169 156 161 156 149 145 151 155	$Pt(d_{x^{2}-y^{2}})$ 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163 0.172 0.202	$)-I_{T}$ I_{7} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292 233 279 273	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2	<i>p</i> _∗)−Pt 84 96 01 34 53 98 73 46 31 89	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.054 0.054		r(p _z)-Pt .063 .063 .063 .062 .065 .061 .060 .061 .068 .060
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SiH ₃ - CN ⁻ CN ⁻ CH ₃ - T	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170 0.173 0.189 0.171	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t(p_x)-I_T$ 160 168 169 156 161 156 149 145 151 155 140	$Pt(d_{x^2-y^2})$ 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163 0.172 0.202 0.249	$)-I_{T}$ I_{7} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292 233 279 273 268	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2	p _x)-Pt 84 96 01 34 53 98 73 46 31 89 99	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.054 0.049 0.043		r(p _z)-Pt .063 .063 .063 .065 .061 .066 .061 .068 .060 .053
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SiH ₃ - CN ⁻ CH ₃ - C	Contrib Pt(s)-I ₇ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170 0.173 0.189 0.171 0.184	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t(p_x)-I_T$ 160 168 169 156 161 156 149 145 151 155 140 152	Pt(d x ² -y ² 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163 0.172 0.202 0.249 0.249	$)-I_{T}$ I_{7} 0 0 0 0 0 0 0 0	r(s)-Pt 296 318 315 302 319 318 292 233 279 273 268 278	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3	p _x)-Pt 84 96 01 34 53 98 73 46 31 89 99 24	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.054 0.043 0.044 0.054		r(p _z)-Pt .063 .063 .062 .065 .061 .060 .061 .068 .060 .053 .058
L PH ₃ C ₂ H ₄ CO H ₂ S NH ₃ H ₂ O H ⁻ SSH ₃ - CN ⁻ CN ⁻ CH ₃ - C C C C C C H- C C C C C C C C C	Contrib Pt(s)-I ₁ 0.212 0.236 0.218 0.211 0.219 0.224 0.134 0.170 0.173 0.189 0.171 0.184 0.181	r P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$t(p_x)-I_T$ 160 168 169 156 161 156 149 145 151 155 140 152 157	$Pt(d_{x^2-y^2})$ 0.299 0.305 0.313 0.356 0.370 0.413 0.132 0.163 0.172 0.202 0.249 0.249 0.229	$)-I_{T}$ I_{7} 0.0 0.	r(s)-Pt 296 318 315 302 319 318 292 233 279 273 268 278 278 276	Ir(x 0.3 0.3 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3	<i>p_x</i>)–Pt 84 96 01 34 53 98 73 46 31 89 99 24 22 22	$I_{T}(p_{y})-P_{T}$ 0.051 0.057 0.063 0.051 0.054 0.052 0.043 0.044 0.054 0.043 0.044 0.054 0.049 0.043 0.047 0.051		r(p _z)-Pt .063 .063 .062 .065 .061 .060 .061 .068 .060 .053 .058 .062

	Contributions to Pt-I _C Bonds										
L	Pt(s)–I _C	$Pt(p_y)-I_C$	$Pt(d_{x^2-y^2})-I_C$	I _C (s)–Pt	$I_{c}(p_{x})-Pt$	$I_{\rm C}(p_{\rm y})$ –Pt	$I_{C}(p_{z})$ Pt				
PH ₃	0.167	0.147	0.256	0.258	0.043	0.316	0.058				
C₂H₄	0.166	0.171	0.263	0.265	0.053	0.335	0.067				
CO	0.201	0.161	0.253	0.295	0.063	0.323	0.076				
H ₂ S	0.189	0.155	0.247	0.279	0.056	0.312	0.066				
NH ₃	0.194	0.159	0.246	0.288	0.060	0.309	0.073				
H₂O	0.205	0.156	0.245	0.296	0.068	0.303	0.073				
H-	0.194	0.137	0.234	0.292	0.043	0.273	0.060				
SiH₃⁻	0.158	0.127	0.228	0.252	0.037	0.266	0.051				
CN ⁻	0.201	0.146	0.214	0.288	0.049	0.273	0.064				
CH₃⁻	0.186	0.147	0.208	0.274	0.047	0.266	0.061				
I-	0.171	0.140	0.249	0.268	0.043	0.299	0.053				
Cr	0.193	0.146	0.224	0.279	0.053	0.283	0.062				
OH-	0.212	0.147	0.181	0.290	0.058	0.246	0.067				
NO ₂ ⁻	0.204	0.153	0.223	0.291	0.056	0.286	0.069				

	Atom Char	ges and Bond In	dices	Orbital Populations I				
L	Pt	Ι	Pt–I	\$	p _x	Py	Pı	
PH3	+0.109	-0.246	0.729	1.681	1.577	1.914	1.900	
C₂H₄	+0.186	-0.398	0.843	1.785	1.568	1.946	1.938	
co	+0.234	-0.288	0.914	1.731	1.579	1.941	1.928	
H ₂ S	+0.177	-0.290	0.828	1.702	1.624	1.923	1.909	
NH ₃	+0.191	-0.412	0.884	1.751	1.679	1.938	1.937	
H₂O	+0.284	-0.404	0.931	1.739	1.704	1.941	1.932	
H−	-0.049	-0.609	0.708	1.769	1.775	1.981	1.963	
SiH₃ [−]	-0.136	-0.408	0.599	1.684	1.689	1.934	1.911	
CN-	+0.052	-0.561	0.736	1.761	1.740	1.965	1.956	
CH ₃ ⁻	+0.054	-0.607	0.684	1.781	1.756	1.966	1.961	
г	-0.041	-0.499	0.699	1.727	1.697	1.944	1.941	
C۲	+0.153	-0.545	0.729	1.751	1.741	1.949	1.950	
OH-	+0.176	-0.609	0.710	1.764	1.820	1.963	1.955	
NO₂ [−]	+0.186	0.545	0.788	1.756	1.750	1.959	1.949	
	Contributio	ns to Pt-I Bonds	s		· · · · · · · · · · · · · · · · · · ·			
L	Pt(s)–I	(p _x)–I	$Pt(d_{x^2-y^2})-I$	I(s)–Pt	I(p _x)Pt	I(py)–Pt	$I(p_z)$ -Pt	
PH3	0.159	0.166	0.274	0.255	0.348	0.042	0.062	
C_2H_4	0.152	0.224	0.306	0.269	0.416	0.062	0.084	
CO	0.227	0.191	0.267	0.341	0.351	0.086	0.114	
H ₂ S	0.205	0.185	0.263	0.301	0.355	0.066	0.084	
NH3	0.223	0.200	0.244	0.329	0.347	0.083	0.110	
H ₂ O	0.252	0.199	0.235	0.352	0.346	0.098	0.119	
H⁻	0.212	0.140	0.223	0.324	0.253	0.029	0.065	
SiH3 ⁻	0.147	0.120	0.218	0.245	0.246	0.033	0.049	
CN-	0.231	0.159	0.192	0.323	0.261	0.052	0.074	
CH3-	0.204	0.161	0.180	0.297	0.249	0.049	0.069	
I-	0.171	0.140	0.249	0.268	0.299	0.043	0.053	
CF	0.220	0.159	0.195	0.304	0.272	0.059	0.069	
OH-	0.263	0.160	0.119	0.333	0.215	0.063	0.079	
NO_2^-	0.247	0.177	0.182	0.334	0.275	0.069	0.091	

TABLE II. Electronic Distributions in trans-Pt(L)₂I₂ Complexes.

TABLE II1. Electronic Distributions in cis-Pt(L)₂I₂ Complexes.

L	Atom Charg	ges and Bond In	Orbital Populations I					
	Pt	I	Pt–I	I–L	5	Px	Ру	p _z
PH ₁	+0.071	-0.235	0.826	0.380	1.673	1.556	1.921	1.902
C ₂ H₄	+0.191	-0.300	0.933	0.430	1.715	1.540	1.937	1.927
co	+0.214	-0.219	1.032	0.408	1.693	1.529	1.927	1.915
H ₂ S	+0.117	-0.218	0.940	0.411	1.689	1.524	1.926	1.915
NH ₃	+0.097	-0.276	1.020	0.400	1.705	1.552	1.935	1.934
H ₂ O	+0.127	-0.238	1.071	0.413	1.706	1.526	1.931	1.937
H-	-0.126	-0.656	0.587	0.379	1.754	1.847	1.957	1.939
SiH ₃ -	-0.161	-0.473	0.562	0.347	1.699	1.741	1.937	1.907
CN-	+0.033	-0.573	0.695	0.363	1.734	1.777	1.950	1.937
CH ₁ -	+0.042	-0.579	0.698	0.356	1.748	1.756	1.954	1,946
Г	-0.041	-0.499	0.699	0.324	1.727	1.697	1.944	1.941
CL	+0.147	-0.522	0.757	0.359	1.732	1.719	1.946	1.941
OH-	+0.182	-0.562	0.749	0.356	1.742	1.770	1.949	1.942
NO ₂ ⁻	+0.186	-0.491	0.833	0.361	1.720	1.716	1.947	1.936

TABLE	III. ((Cont.)
-------	--------	---------

-	Contributions to Pt-I Bonds								
	Pt(s)–I	Pt(p _x)–I	$Pt(d_{x^2-y^2})-I$	I(s)–Pt	I(p _x)–Pt	I(py)–Pt	I(p _z)–Pt		
PH ₃	0.204	0.176	0.298	0.291	0.395	0.051	0.066		
C₁H₄	0.230	0.214	0.326	0.329	0.440	0.069	0.076		
co	0.268	0.202	0.324	0.362	0.447	0.089	0.108		
H ₂ S	0.235	0.179	0.349	0.322	0.448	0.068	0.076		
NH ₃	0.263	0.193	0.368	0.355	0.482	0.074	0.086		
H ₂ O	0.284	0.185	0.404	0.359	0.522	0.083	0.081		
H-	0.145	0.158	0.126	0.282	0.141	0.053	0.077		
SiH ₃ -	0.158	0.185	0.149	0.226	0.219	0.038	0.057		
CN ⁻	0.204	0.165	0.151	0.310	0.219	0.060	0.078		
CH ₃ -	0.211	0.167	0.170	0.291	0.268	0.052	0.066		
Г	0.171	0.140	0.249	0.268	0.299	0.043	0.053		
Cr	0.212	0.164	0.223	0.297	0.312	0.057	0.065		
OH-	0.236	0.166	0.171	0.307	0.282	0.065	0.072		
NO ₂ ⁻	0.243	0.171	0.236	0.341	0.318	0.067	0.082		

the Pt $5d_{x^2-y^2}$ orbital varies in opposite directions in the two series.

These cis-influence series are clearly very different from the aforementioned trans-influence series, although omission of the strongly π -bonding ligands (CO, C_2H_4 , CN⁻, NO₂⁻) considerably reduces the discrepancies. It is significant that high cis-influences are obtained when the ligand has formally unoccupied low-energy d orbitals such as those of PH₃, H₂S and SiH₃⁻. These orbitals facilitate the formation of strong Pt-ligand bond with subsequent weakening of the cis Pt-I bond. In addition, further direct interaction with the iodine orbitals intensifies the electron withdrawal from the Pt-I bonds. Inspection of the density matrices of complexes containing these ligands shows that the d-orbital involvement is of primary importance to L-I interactions. The ligand d-orbital populations and relevant bond indices are given in Table IV. The importance of this d-orbital participation is better understood when compared with the L-I bond indices of 0.094, 0.069 and 0.116 found when L is NH_3 , H_2O and CH_3^- , respectively. In each case the Ld_{xy} orbital contains the greatest electron density and the Ld_{xy} -I partial bond index makes a significant contribution to the total bonding. Clearly, the directional properties of the Ld_{xy} orbital enhances this ubiquitous L-I interaction. This is further substantiated by the lower cisinfluence found for π -bonding ligands such as CO, CN^- , and NO_2^- , which do not possess low-energy d orbitals. It is expected that this ligand-halide contribution will be less significant when we replace the iodines by smaller halogen atoms. The Pt(6s) interactions will therefore assume a more dominant rôle in determining the ligand sequence.

Although this availability of low-energy d orbitals augments the *cis*-influence of a ligand, it does not detract from the observed high *trans*-effect of such ligands. This is a result of the ligand d_{yz} orbital accepting additional electron density in the transition state, thereby lowering the activation energy for substitution at the *trans*-position.^{6, 17, 18} Although the metal $d_{x^2-y^2}$ orbital appears to be more effective in transmitting *trans*-influences than *cis*-influences, the interaction of the iodine atom with the metal s orbital is comparable with its interaction with the metal $d_{x^2-y^2}$ orbital.

Cis and Trans-Influences in Cis-Pt(L)₂ I_2

In complexes of the type cis-Pt(L)₂I₂, the Pt-I bond is subjected to a combination of cis- and transinfluences of the ligand and these results are expected to verify the trends found in both Pt(L)I₃ and trans-Pt(L)₂I₂. The results for this series of complexes are presented in Table III. The ligand series obtained are

$$PH_3 > C_2H_4 > H_2S > NH_3 > CO > H_2O$$

and
 $SiH_3^- > H^- > CN^- > CH_3^- > I^- > OH^- > C\Gamma > NO_2^-.$

TABLE IV. Electronic Distributions in Ligands with Low-energy d Orbitals.

L	$d_{x^2 \rightarrow y^2}$	d _{xz}	<i>d</i> z ²	dyz	d _{xy}	L(d _{xy})–I	$L(d_{x^2-y^2})-I$	L-I
PH ₃	0.068	0.053	0.047	0.056	0.162	0.105	0.047	0.398
H ₂ S	0.041	0.022	0.026	0.096	0.129	0.090	0.030	0.288
SiH3-	0.059	0.045	0.041	0.042	0.120	0.083	0.039	0.369

These ligand sequences are readily related to the results of the two previous series of complexes. For example, the high positions of PH_3 and SiH_3^- are a consequence of both the high *trans*- and *cis*-influences exhibited by these ligands. The positioning of H_2S above CO in the series is due to the higher *cis*-influence of the former. Analogous reasoning may be used to rationalise the positions in the series containing the uni-negatively charged ligands. These results demonstrate the importance of the *cis*-influence in these complexes.

The reasoning outlined above may be extended to more complicated systems and, in order to exemplify this, a few complexes of the type *trans*-Pt(L)₂XI were studied. The results are shown in Figure 2. Comparison of *trans*-Pt(PH₃)₂(CH₃)I, (A) with *trans*-Pt(NH₃)₂ (CH₃)I, (B), or *trans*-Pt(PH₃)₂(H)I, (C) with *trans*-Pt(NH₃)₂(H)I, (D), evinces that the higher *cis*influence of PH₃ with respect to NH₃ weakens both the Pt-I and Pt-C bonds. Similarly, comparison of (A) with (C) or (B) with (D) demonstrates the higher *trans*-influence of H⁻. Thus, the overall bonding patterns in any square-planar platinum(II) complex may be rationalised in terms of *cis*- and *trans*-influences.

Comparison with Experiment

An appraisal of the physical validity of these results may be acquired by comparison with ¹²⁹I Mössbauer data recently obtained for complexes of the type, *cis*and *trans*-Pt(L)₂I₂, and *trans*-Pt(L)₂HI.⁷ The quadrupole coupling constants derived for these species may be rationalised in terms of the extent of donation from the lone pair of the formally uninegative iodine ligand to the platinum since, as in the interpretation of N.Q.R. data,^{19,20} the degree of electron donation parallels the magnitude of the coupling constant. The quadrupole coupling constants and isomer shifts for six complexes, representative of the aforementioned series are presented in Table V.

The observation that the smallest negative values of the quadrupole coupling constant are found for two hydrido complexes suggests a correlation based on the high *trans*-influence of the hydrido ligand.⁷ This can be confirmed by inspection of the electronic structure of complexes of type $Pt(L)I_3^-$ in Table I where the

Figure 2. Charges and bond indices in *trans*-Pt(L)₂XI complexes.

largest I_T population occurs when the ligand is the hydride ion. In the series cis- and trans-Pt(L)₂I₂ the most negative coupling constant is obtained when a P-donor is the ligand while the smallest values occur when $L = NH_3$. These results can be explained by reference to the charge on iodine in cis- and trans- $Pt(L)_2I_2$ from $L = NH_3$ and $L = PH_3$ (Tables II and III). It can be seen that in both series the larger negative charge occurs when $L = NH_3$. It has been suggested that the greater accumulation of charge on iodine will mean the presence of a weaker Pt-I bond and hence will indicate a stronger directive influence. The results in Tables II and III reveal that this is not necessarily truc. The weakest Pt-I bond in the two series occurs when $L = PH_3$ but the corresponding iodine population is not the largest. This unexpected trend arises from the presence of non-bonded L-I and I-I interactions directed along the edges of the squareplanar complex.

The *p*-electron imbalance, U_p , is defined as $U_p = h_x^{-1/2}(h_y + h_z)$ where h_x , h_y , and h_z are the number of 'electron-holes' in the *p*-orbitals (note the Pt–I axis has been taken as the *x* axis). The quadrupole coupling constant, e^2qQ , is related to U_p in the Townes–Dailey approximation¹⁹ by

$$U_{\rm p} = {\bf e}^2 q Q / {\bf e}^2 q Q ({\rm atom}) = {\bf e}^2 q Q / (-70.33 \text{ mm s}^{-1})$$

TABLE V. The Quadrupole Coupling Constants, Isomer Shifts and Orbital Populations for Iodine.

	$e^2 qQ(^{129}I)/(mm s^{-1})$	$\delta_{ZnTe}/(mm s^{-1})$	h _s	ħsc	Up	$U_p^{\ c}$
trans-Pt(PH ₁) ₂ HI	23.9ª	-0.46ª	0.32	0.05ª	0.19	0.34ª
trans-Pt(PH _a) _a I _a	-36.3ª	-0.35 ^a	0.32	0.06ª	0.33	0.52 ^a
trans-Pt(SH_)-I_	-32.3 ^b	-0.25 ^b	0.30	0.04 ^b	0.29	0.46 ^b
trans-Pt(NH_)-L	-30.5	-0.32	0.25	0.05	0.26	0.43
cis-Pt(PH_)-L	-30.2ª	-0.21 ^a	0.33	0.03ª	0.36	0.43ª
cis-Pt(NH ₃) ₂ I ₂	-28.0	-0.16	0.30	0.02	0.38	0.40

^a $L = Et_3P$. ^b $L = Et_2S$. ^c Ref. 7.

Cis- and Trans-Influence in Pt(II) Complexes

Although computational limitations precluded the acquisition of theoretical results pertaining to the bulkier ligands, the experimental trends are well reproduced, especially when the differences down the series are computed. Hence, it appears that a reasonable estimate of the *p*-electron imbalance, U_p for iodine atoms, can be obtained from the Townes-Dailey relation.

The calculated and previously reported⁷ h_s values (Table V) show a significant discrepancy. The latter were obtained from the empirical relationship

$$h_s = (-\delta_{ZnTe}/(mm s^{-1}) + 1.5 h_p - 0.54)/9.1$$

This equation was suggested by Bukshpan, Goldstein, and Sonnino²⁰ as a modification of one derived by Pasternak and Sonnino.²¹ In obtaining their expression the latter authors assumed the distribution of electrons between 5s and 5p orbitals of iodine in IO_3^- , $IO_4^$ and IO_6^{5-} to be given exactly by the limiting tetrahedral and octahedral hybrid forms.

$$\psi_{t} = \frac{1}{2}\psi_{s} + \frac{\sqrt{3}}{2}\psi_{p}$$
$$\psi_{o} = \frac{1}{\sqrt{6}}\psi_{s} + \frac{1}{\sqrt{2}}\psi_{p} + \frac{1}{\sqrt{3}}\psi_{d}$$

This is a drastic assumption which is most unlikely to accord with reality: even in the 'ideal' case of diamond, for example, the valence electrons are not equally distributed between the 2s and 2p orbitals.²² Hence, we believe that the h_s values calculated in the present work are more reliable and we suggest the modified empirical equation

$$h_s = (-\delta_{ZnTe}/(mm s^{-1}) + 1.5h_p + 1.84)/9.1$$

The calculations reported here have shown that for a series of ligands, the *cis*- and *trans*-influences are similar in magnitude and, although the ligand sequences are not identical, they are in the same direction. For the *trans*-influence series, the weakening of the *trans*-bond is caused by the differing participation of the Pt $5d_{x^2-y^2}$ orbital, while both the rôle of the Pt 6s orbital and the ligand-iodine interaction are important in the *cis*-influence series. The ¹²⁹I Mössbauer data for *cis*- and *trans*-Pt(L)₂I₂ complexes can be adequately explained by reference to the calculations of the *cis*- and *trans*-influence series in the complexes.

Acknowledgment

One of us (R.F.) thanks the University of Strathclyde for a bursary.

References

- 1 F. Basolo and R.G. Pearson, *Progr. Inorg. Chem.*, 4, 881 (1962).
- 2 L. Cattalini, Progr. Inorg. Chem., 13, 263 (1970).
- 3 T.G. Appleton, H.C. Clark and L.E. Manzer, *Coord. Chem. Revs.*, 10, 335 (1973).
- 4 F.R. Hartley, Chem. Soc. Revs., 2, 163 (1973).
- 5 S.S. Zumdahl and R.S. Drago, J. Am. Chem. Soc., 90, 6669 (1968).
- 6 D.R. Armstrong, R. Fortune and P.G. Perkins, *Inorg. Chim. Acta*, 9, 9 (1974).
- 7 B.W. Dale, R.J. Dickinson and R.V. Parish, Chem. Phys. Letts., 24, 286 (1974); Chem. Comm., 35 (1974).
- 8 C.C.J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
- 9 J.A. Pople, D.P. Santry and G.A. Segal, J. Chem. Phys., 43, 5129, 5136 (1965).
- 10 D.R. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc. (A), 3654 (1971).
- 11 C.E. Moore, 'Atomic Energy Levels', Natl. Bur. Std. (U.S.), Circ. No. 467.
- 12 'Interatomic Distances in Molecules and Ions', Chem. Soc. (Lond.), Special Publication No. 11, 1958.
- 13 M.R. Snow and J.A. Ibers, Inorg. Chem., 12, 224 (1973).
- 14 D.R. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc. Dalton, 838 (1973).
- 15 D.R. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc. Dalton, 2273 (1973).
- 16 C.M. Langford and H.B. Gray, 'Ligand Substitution Processes', Benjamin, New York, 1965; R. McWeeny, R. Mason and A.D.C. Towl, *Discuss. Faraday Soc.*, 47, 20 (1969).
- 17 J. Chatt, L.A. Duncanson and L.M. Venanzi, J. Chem. Soc., 4, 4456 (1955).
- 18 L.E. Orgel, J. Inorg. Nucl. Chem., 2, 137 (1956).
- 19 C.H. Townes and B.P. Dailey, J. Chem. Phys., 17, 782 (1949).
- 20 S. Bukshpan, C. Goldstein and T. Sonnino, J. Chem. Phys., 49, 5477 (1968).
- 21 M. Pasternak and T. Sonnino, J. Chem. Phys., 48, 1997 (1968).

ţ.

22 J.J.P. Stewart, personal communication.